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WKB Wave Function of the General Time-Dependent
Quadratic Hamiltonian System

Jeong Ryeol Choi1

We derived the WKB wave function for the general time-dependent quadratic
Hamiltonian system using a unitary transformation method. We applied our research
to sinusodially drived Caldirola–Kanai oscillator and confirmed that the time evolution
of our approximated WKB wave function is similar to that of the exact one. This wave
function can be used to analyze the interference between the probability amplitudes
contributed by the area of overlap in phase space of quantum states.
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1. INTRODUCTION

In recent years, many researches have been contributed to the transition from
classical physics to the semiclassical and quantum physics. Especially, much of
the work in quantum mechanics of the time-dependent harmonic oscillator, we
may recall, accomplished with the intermediate aid of the adiabatic invariants (Hu,
1998; Neishtadt, 1981). It is known that the problem of the harmonic oscillator
with time-variable frequency was first solved in 1880 by Ermakov (Hass, 2002;
Qian, Huang, and Gu, 2001) in view of the classical mechanics. Therefore, such
systems are named Ermakov systems owned a related constant of motion that often
called as an Ermakov invariant quantity. A generalization of the Ermakov systems
are found in Hass (2002) and a detailed discussion about them in view of quantum
point are found in Hartley and Ray (1981).

After the publication of thte work of Kramers (see Robicheaux et al. (1987)
and references there in) in 1926 for WKB approximation in order to solve one-
dimensional wave equations, vivid research for the WKB calculation has been
performed in the literature (Guérin, 1996; Robicheaux et al., 1987; Robnik and
Salasnich, 1997). WKB method is a nice technique especially for computing ap-
proximate eigenvalues of the one-dimensional Schrödinger equation of the slowly
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varying potentials (Fröman and Fröman, 1965; Geldart and Kiang, 1986). Hence, it
is a good tool to bridge the interval between classical and quantum theory (Kromer,
1994; Merzbacher, 1970). In this paper, we derive WKB wave function of the
general time-dependent harmonic oscillator using an invariant operator that was
introduced by Lewis (1967). The invariant operator is very useful in order to derive
exact solutions of the time-dependent quantum-mechanical Hamiltonian systems.
Recently, the exact invariant quantities for the three-dimensional Hamiltonian sys-
tems which can be applicable to the time-dependent nonlinear harmonic oscillator
are derived (Struckmeier and Riedel, 2000). The exact wave function of the gen-
eral time-dependent harmonic oscillator has been reported in the literature (Choi,
2003; Yeon et al., 1997). However, the derivation of the semiclassical WKB wave
function is worth because it can be applied to analyze the interference between
the probability amplitudes contributed by the areas of overlap in phase space of
quantum states (Schleich, Walls, and Wheeler, 1988).

This paper is organized as follows. In Section II, we survey how to transform
complicated time-dependent Hamiltonian to the simple one that can be easily
treated. We derived the WKB wave function in Section III. We discussed the
approximated wave function at the classical turning point in Section IV. Finally,
in the last section, we apply our research to sinusoidally driven Caldirola–Kanai
oscillator.

2. SURVEY OF THE UNITARY TRANSFORMATION FOR
THE TIME-DEPENDENT HAMILTONIAN SYSTEM

In this section, we review the unitary transformation method (Li et al., 1994)
for the general time-dependent quadratic Hamiltonian system of the form (Choi,
2003; Yeon et al., 1997)

H (x , p, t) = A(t)p2 + B(t)(xp + px) + C(t)x2 + D(t)x + E(t)p + F(t), (1)

where A(t) − F(t) are time-variable functions that differentiable with respect to
time. Note that A(t) is not zero. The system evolves according to the following
Schrödinger equation as time goes by

ih
∂

∂t
ψ = H (x , p, t)ψ. (2)

The original Hamiltonian can be transformed to another form by a unitary operator
U (Li et al., 1994):

H ′ = U−1 HU − ihU−1 ∂U

∂t
. (3)

If we choose U as

U = U1U2U3, (4)
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with

U1 = exp

(
i

h
ppx

)
exp

(
− i

h
x p p

)
, (5)

U2 = exp

(
− i(2Bρ − ρ̇)

4Ahρ
x2

)
, (6)

U3 = exp

[
− i

4h
(xp + px) ln(2ρ2)

]
, (7)

where ρ(t) is the solution of the following differential equation

ρ̈(t) − Ȧ

A
ρ̇(t) +

(
2

ȦB

A
− 4B2 + 4AC − 2Ḃ

)
ρ(t) − k A2 1

ρ3(t)
= 0, (8)

and x p(t) and pp(t) stand for the particular solutions (Choi, 2002a, Yeon et al.,
1997) of the classical equation of motion of the system, i.e., they satisfies

ẍ p(t) − Ȧ

A
ẋ p(t) +

(
2

ȦB

A
− 4B2 + 4AC − 2Ḃ

)
x p(t)

= − ȦE

A
+ 2BE − 2AD + Ė , (9)

p̈ p(t) − Ċ

C
ṗp(t) +

(
4AC − 2

ĊB

C
− 4B2 + 2Ḃ

)
pp(t)

= ĊD

C
+ 2BD − 2CE − Ḋ. (10)

Then, Eq. (3) can be simplified to

H ′ = g(t)I ′(x) + Lp (x p(t), ẋ p(t), t) − E2(t)

4A(t)
+ F(t), (11)

where

g(t) = A(t)

ρ2(t)
, (12)

I ′(x) = −h2

2

∂2

∂x2
+ 1

2
kx2, (13)

Lp(x p(t), ẋ p(t), t) = 1

4A(t)
ẋ2

p(t) − B(t)

A(t)
x p(t)ẋ p(t) −

(
C(t) − B2(t)

A(t)

)
x2

p(t).

(14)

Note that I ′(x) is the invariant operator of the transormed system and the form of
Lp(x p(t), ẋ p(t), t) is same as the Langrangian of the system with D = E = 0
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except that x and ẋ replaced with x p and ẋ p. The relation between invariant op-
erator, I (x , t), of the untransformed system and invariant operator, I ′(x), of the
transformed system is (Li et al., 1994).

I (x , t) = U I ′(x)U−1. (15)

The system of the transformed Hamiltonian evolves acording to the following
Schrödinger equation

ih
∂

∂t
ψ ′ = H ′ψ ′. (16)

We can proceed by writing that

ψ ′(x , {p}, t) = T (t)φ′(x , {p}). (17)

When we substitute Eqs. (11) and (17) into Eq. (16), we find that

I ′φ′ = λφ′, (18)

∂T (t)

∂t
= 1

ih

[
λg(t) + Lp(x p(t), ẋ p(t), t) − E2(t)

4A(t)
+ F(t)

]
T (t), (19)

where λ is a separation constant (or an eigenvalue of the transformed invariant
operator). If we consider Eqs. (13) and (18), the separation constant is discrete:

λn = h
√

k

(
n + 1

2

)
. (20)

We see that Eq. (19) can be readily solved as

T (t) = exp

[
− i

√
k

(
n + 1

2

) ∫ t

0

A(t ′)
ρ2(t ′)

dt ′

− i

h

∫ t

0

[
Lp(x p(t ′), ẋ p(t ′), t ′) − E2(t ′)

4A(t ′)
+ F(t ′)

]
dt ′

]
. (21)

3. WKB WAVE FUNCTION

Using Eq. (20), Eq. (18) can be written in the form

d2φ′

dx2
+ p2

h2 φ′ = 0, (22)

where

p =
√

2λn − kx2. (23)
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In the discussion of the WKB wave function, it can be shown that wave function
can be approximated by

φ′ = φ′
0 exp

[
± i

h

∫ x

p(x) dx

]
, (24)

where φ′
0(x) and p(x) are slowly varying functions. By substitution of this approx-

imate solution into Eq. (22) under the assumption that h/p is small than the other
dimensions in problem, we can show that (Powell and Crasemann, 1961)

d2φ′
0

dx2
± i

h

(
2p

dφ′
0

dx
+ φ′

0
dp

dx

)
= 0. (25)

If we neglect the first term of the above equation, we can derive φ′
0 as

φ′
0 = C√

p
, (26)

so that Eq. (24) becomes

φ′ = C√
p

exp

[
± i

h

∫ x

p(x) dx

]
. (27)

We may determine how good an approximation the WKB wave function is. To do
this, using Eqs. (25)–(27) we derive the differential equation

d2φ′

dx2
+

[
p2

h2 − 3

4

(
p′

p

)2

+ p′′

2p

]
φ′ = 0, (28)

where

p′ = dp

dx
, p′′ = d2 p

dx2
. (29)

If we compare Eq. (28) with Eq. (22) we can confirm that the last two terms
in the left-hand side of Eq. (28) are extra terms. In order to Eq. (28) be a good
approximation, these extra terms must become negligible quantity compared to
the other terms in the left-hand side, i.e., (Kroemer, 1994; Powell and Crasemann,
1961),

h2

4

∣∣∣∣2 p′′

p
− 3

(
p′

p

)2∣∣∣∣ � |p|2. (30)

The unnormalized eigenstate approximated using WKB method to the bound
system is (Powell and Crasemann, 1961)

φ′ = (−1)n 1√
p

exp

(
− 1

h

∫ xn−

x
p dx

)
for x < xn−, (31)
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= (−1)n 2√
p

cos

(
1

h

∫ x

xn−
p dx − π

4

)
for xn− < x < xn+, (32)

= 1√
p

exp

(
− 1

h

∫ x

xn+
p dx

)
for xn+ < x , (33)

where xn− is lower turning point and xn+ is upper turning point of the transormed
oscillator:

xn± = ±
√

2λn

k
, (34)

and p is defined only when p is imaginary as

p = |p| =
√

kx2 − 2λn. (35)

Integrating after substitution of Eqs. (23) and (35), we obtain from Eqs. (31)–(33)

φ′ = (−1)n 1
4
√

kx2 − 2λn

exp

{
− 1

h

[
|x |
2

√
kx2 − 2λn

− λn√
k

cosh−1

(√
k

2λn
|x |

)]}
for x < xn−, (36)

= (−1)n 2
4
√

2λn − kx2
cos

{
1

h

[
x

2

√
2λn − kx2 + λn√

k
sin−1

(√
k

2λn
x

)

− λnπ√
k

(
2m + 3

2

)]
− π

4

}
for xn− < x < xn+, (37)

= 1
4
√

kx2 − 2λn

exp

{
− 1

h

[
x

2

√
kx2 − 2λn − λn√

k

× cosh−1

(√
k

2λn
x

)]}
for xn+ < x , (38)

where m = 0, 1, 2, . . . . Hereafter, we will choose m = 0. In the derivation Eq.
(36), we altered the interval of the integration from (x , xn−) into (xn+, |x |) for
the sake of the symmetry of the simple harmonic potential. The eigenstate of the
untransformed invariant operator can be derived from (Choi and Zhang, 2002b)

φ = Uφ′. (39)
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Applying Eq. (4) to the above equation, we can obtain that

φ = (−1)n 1
4
√

k(x − x p)2 − 4ρ2λn

eipp x/ h exp

(
− i(2Bρ − ρ̇)

4Ahρ
(x − x p)2

)

× exp

{
− 1

h

[
1

2
√

2

∣∣∣∣ x − x p

ρ

∣∣∣∣
√

k

2ρ2
(x − x p)2 − 2λn

− λn√
k

cosh−1

(√
k

4λn

∣∣∣∣ x − x p

ρ

∣∣∣∣
)]}

for x < xn−, (40)

= (−1)n 2
4
√

4ρ2λn − k(x − x p)2
eipp x/ h exp

(
− i(2Bρ − ρ̇)

4Ahρ
(x − x p)2

)

× cos

{
1

h

[
1

2
√

2

x − x p

ρ

√
2λn − k

2ρ2
(x − x p)2

+ λn√
k

sin−1

(√
k

4λn

x − x p

ρ

)
− 3λnπ

2
√

k

]
− π

4

}
for xn− < x < xn+,

(41)

= 1
4
√

k(x − x p)2 − 4ρ2λn

eipp x/ h exp

(
− i(2Bρ − ρ̇)

4Ahρ
(x − x p)2

)

× exp

{
− 1

h

[
1

2
√

2

x − x p

ρ

√
k

2ρ2
(x − x p)2 − 2λn

− λn√
k

cosh−1

(√
k

4λn

x − x p

ρ

)]}
for xn+ < x . (42)

The WKB wave function of the original system related to Hamiltonian Eq. (1) is
given by

ψ = T (t)φ. (43)

4. EIGENSTATE NEAR THE TURNING POINTS

In the previous section, we derived wave function of the system using the
WKB approximation method. However, it is known that near the classical turning
points, xn±, of the tranformed oscillator, these approximations fail. The eigenstate
φ′ near the turning points are the Airy functions (Powell and Crasemann, 1961):

φ′ � Ai(z) = 1

π

∫ ∞

0
cos

(
s3

3
+ sz

)
ds, (44)
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where

z = −
(

2

h2 k|xn−|
)1/3

(x − xn−) at the neighborhood of xn−, (45)

=
(

2

h2 kxn+

)1/3

(x − xn+) at the neighborhood of xn+. (46)

For large z, Eq. (44) asymptotically becomes (Powell and Crasemann, 1961)

φ′ � 1

2
√

π z1/4
exp

(
−2

3
z3/2

)
for z > 0, (47)

� 1√
π (−z)1/4

sin

[
2

3
(−z)3/2 + π

4

]
for z < 0. (48)

Applying the same relation in Eq. (39), we have

φ � 1

2
√

21/2πρZ1/4
eipp x/h exp

(
− i(2Bρ − ρ̇)

4Ahρ
(x − x p)2

)

× exp

(
−2

3
Z3/2

)
for z > 0, (49)

� 1√
21/2πρ(−Z )1/4

eipp x/h exp

(
− i(2Bρ − ρ̇)

4Ahρ
(x − x p)2

)

× sin

[
2

3
(−Z )3/2 + π

4

]
for z < 0, (50)

where

Z = −
(

2

h2 k|xn−|
)1/3( 1√

2ρ
(x − x p) − xn−

)
at the neighborhood of xn−,

(51)

=
(

2

h2 kxn+

)1/3( 1√
2ρ

(x − x p) − xn+

)
at the neighborhood of xn+. (52)

The form of the wave function for the original system is given by Eq. (43) with
Eqs. (21), (49), and (50).

5. APPLICATION TO CALDIROLA–KANAI OSCILLATOR

As an example, let us apply our theory to the Caldirola–Kanai oscillator
(Kanai, 1948) driven by a periodical force F0 cos(ω1t + θ ), where F0, ω1, and θ
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Fig. 1. Absolute square of WKB wave function for the Caldirola–Kanai oscillator
with a sinusoidal driving force as functions of position x and time t . This drawing
is based on Eq. (43) with Eqs. (21) and (41). We used quantum number n = 4 and
used parameters of ω0 = 1, ω1 = 0.5, γ = 0.1, m = 1, h = 1, F0 = 1, k = 1
and θ = 0.

Fig. 2. Absolute square of the exact wave function for the Caldirola–Kanai
oscillator with a sinusoidal driving force as functions of position x and time t .
We depicted this figure on the basis of the results in Choi (2003) and used the
same quantum, number and parameters as in Fig. 1.
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Fig. 3. Comparisons between the absolute square of the WKB wave function (thick
line) and exact wave function (dotted line) at (a) t = 0 and (b) t = 2. The exact
wave function is based on the results in Choi (2003). We used the same quantum
number and parameters as in Fig. 1.

are real constants. In this case, A(t) − F(t) in Eq. (1) is given by

A(t) = 1

2m
e−γ t , (53)

C(t) = 1

2
mω2

0eγ t , (54)

D(t) = −F0eγ t cos(ω1t + θ ), (55)

B(t) = E(t) = F(t) = 0. (56)
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Then, the solutions of Eqs. (8)–(10) can be evaluated as

ρ(t) =
√

k1/2

2mω
e−γ t/2, (57)

x p(t) = F0/m√(
ω2

0 − ω2
1

)2 + γ 2ω2
1

cos(ω1t + θ − δ), (58)

pp(t) = − F0ω1√(
ω2

0 − ω2
1

)2 + γ 2ω2
1

eγ t sin(ω1t + θ − δ), (59)

where ω and phase δ are given by

ω =
√

ω2
0 − γ 2

4
, (60)

δ = tan−1 γω1

ω2
0 − ω2

1

. (61)

In Fig. 1, we depicted the absolute square of the WKB wave function as functions
of x and t on the base of Eq. (43) with Eqs. (21) and (41). If we compare this
figure with the exact one in Fig. 2 depicted using the result of Choi (2003), we
can confirm that the time evolution of our approximated WKB wave function is
similar to that of the exact one. For a more detailed comparision between them,
see Fig. 3. Near the classical turning point of the oscillator, e.g., x = ±3 at t = 0,
the WKB approximation deviates remarkably from the exact one like the standard
harmonic oscillator. In conclusion, we plan to investigate interference and overlap
in phase space Wigner pseudoprobabilities (Schleich, Walls, and Wheeler, 1998)
for the time-dependent harmonic oscillator in the near future by using the result
of this paper.
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